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Abstract. We investigate the relationship between students’ affect and their frequency of careless errors while
using an Intelligent Tutoring System for middle school mathematics. A student is said to have committed a
careless error when the student’s answer is wrong despite knowing the skill required to provide the correct
answer. We operationalize the probability that an error is careless through the use of an automated detector,
developed using educational data mining, which infers the probability that an error involves carelessness rather
than not knowing the relevant skill. This detector is then applied to log data produced by high-school students in
the Philippines using a Cognitive Tutor for scatterplots. We study the relationship between carelessness and
affect, triangulating between the detector of carelessness and field observations of affect. Surprisingly, we find
that carelessness is common among students who frequently experience engaged concentration. This finding
implies that a highly engaged student may paradoxically become overconfident or impulsive, leading to more
careless errors. In contrast, students displaying confusion or boredom make fewer careless errors. Further
analysis over time suggests that confused and bored students have lower learning overall. Thus, their mistakes
appear to stem from a genuine lack of knowledge rather than carelessness.
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INTRODUCTION

Disengagement among students has been shown and continues to be a major problem in education.
Disengagement, manifested in various fashions, can reduce learning outcomes (Baker, Corbett,
Koedinger, & Wagner, 2004; Aleven, McLaren, Roll, & Koedinger, 2006; Balfanz, Herzog, & Mac
Iver, 2007; Lau & Darmanegara 2007; Cocea, Hershkovitz, & Baker, 2009; Rowe, McQuiggan,
Robison, & Lester, 2009), and at its extreme can lead to failure in courses, school drop-out, and failure
to attend university (Rumberger & Larson 1998; Balfanz, Herzog, & Mac Iver, 2007; San Pedro,



Baker, Bowers, & Heffernan, 2013). As such, reducing student disengagement has become a goal for
policy-makers (cf. National Research Council & Institute of Medicine 2004). In order to accomplish
this goal, there has been increasing attention to the factors underlying the development of student
disengagement (cf. Nottelmann & Hill 1977; Ryan & Patrick 2001; Balfanz, Herzog, & Mac Iver,
2007; Baker et al., 2008).

Though improved engagement has been seen as part of the promise of computer-aided instruction
(Becker 2000; Sosa, Berger, Saw, & Mary, 2011), disengagement appears to be a problem among
students using various forms of computer-aided instruction, even when the instruction as a whole is
seen as quite engaging (cf. Schofield 1995). Students have been reported to disengage in several ways
while using computer-aided instruction, including 1) "gaming the system", exploiting properties of the
system to get the solution, rather than by learning, which includes behaviors such as systematic
guessing (Baker, Corbett, Koedinger, & Wagner, 2004) and misuse of software help features (e.g.
Aleven, McLaren, Roll, & Koedinger, 2004), and 2) engaging in off-task behavior (Karweit & Slavin
1981), i.e., surfing the web, talking to a friend about something other than the learning material, 3)
working carelessly, making errors that do not reflect the student’s knowledge (Hershkovitz, Wixon,
Baker, Gobert, & Sao Pedro, 2011), and 4) using learning systems in a way unrelated to the
educational or stated task (Rowe, McQuiggan, Robison, & Lester, 2009; Wixon, Baker, Gobert,
Ocumpaugh, & Bachmann, 2012), variously termed off-task behavior or “without thinking
fastidiously” behavior.

There has been evidence in recent years that these disengaged behaviors appear to emerge
following the display of negative affect by students.  For instance, frustration has been found to be
associated with gaming the system (Baker et al., 2008) and boredom has been found to precede
gaming the system (Baker, D’Mello, Rodrigo, & Graesser, 2010). Additionally, boredom (Baker et al.,
2011) has been found to precede off-task behavior, and confusion (Sabourin, Rowe, Mott, & Lester,
2011) has been found to precede using the learning system in a way unrelated to the educational task.
These behavior-affect dynamics show that affect and disengagement interact very closely. However, it
is not yet known how affect interacts with carelessness.

Carelessness

Carelessness, despite its perceived importance among many educators since the 1950s (cf. Eaton,
D’Amico, & Phillips, 1956), and recent evidence that it is associated with the failure to attend college
(San Pedro, Baker, Bowers, & Heffernan, 2013), has been relatively lightly studied in education.
There have been three paradigms for studying carelessness among learners: analyzing error patterns
using heuristics, self-report measures, and analyzing error patterns using data mining.

The first paradigm, analyzing error patterns within paper mathematics tests using heuristics,
emerges from work by Clements in the 1980s. Clements (1982) studied 6th-grade students’ errors
during mathematics problem-solving. Clements administered mathematical assessment tests twice to
50 sixth-grade students on successive days, and items that the student answered correctly on one
occasion but incorrectly on the other. They were then interviewed, using a structured method for
analyzing problem-solving process during interviews (Newman 1977). If the student got an incorrect
answer during the interview as well, then the original error was deemed non-careless. But if the
student got the problem correct during the interview without any assistance from the interviewer, then
the original error was deemed careless. Through this method, Clements assessed 20% of student errors
as careless. Interestingly, Clements found that over-confidence was associated with carelessness.



The second paradigm, using self-report measures, was developed by Maydeu-Olivares and
D’Zurilla (1996), who developed a scale to represent students’ perceptions that their problem-solving
attempts are impulsive, careless and incomplete. Their self-report measure of carelessness was found
to be correlated with academic performance, as it was shown to be an effective predictor of grades.

A third paradigm is to analyze error patterns using data mining. In this paradigm, an automated
detector of carelessness is developed, which attempts to assess whether an error is due to a lack of
knowledge or carelessness. This model is conceptually similar to Clements’ approach, defining
careless errors as errors where the student knows how to answer correctly, but is based on data mining
rather than heuristics. The detection approach will be discussed later, but relies upon assessments of
the probability that the student knows the relevant skill (cf. Corbett & Anderson 1995), and data on
future performance in the tutoring software (Baker, Corbett, & Aleven, 2008b). This detector has been
shown to predict post-test performance, even after taking assessments of student skill into account
(Baker et al., 2010).

Beyond educational settings, careless errors have been studied in the literature on slips, defined
by Norman (1981) as an error where a person makes an action that is not intended. Slips are seen as
involving inattention, or even “absent-mindedness” in some theoretical accounts (Eysenck & Keane
1990). Hay and Jacoby (1996) stated that slips are most likely to happen when the correct response
was not the strongest, and when the response had to be acted on rapidly where attention is not most
likely to be directed to the correct response. By contrast, Norman (1981) theorized that action slips
occur when there are errors in intention formation, activation of the wrong schema, or actions
determined by a wrong schema. Norman theorized that action slips may be caught by the person just
before they make an error, at the moment the error occurs. But they also may never be caught at all
(Norman, 1981). The factors leading to carelessness in educational settings are not yet fully known,
though there has been some research on the relationship between individual differences and
carelessness. Maydeu-Olivares and D’Zurilla (1996) conceptualize carelessness as a stable personality
trait, and Hershkovitz and colleagues (2011) find evidence linking carelessness to having either
learning goals or performance goals, with students manifesting neither goal unexpectedly
demonstrating more careful behavior during learning. Clements (1982) finds links between over-
confidence and carelessness. Baker and Gowda (2010) find year-long differences in the prevalence of
carelessness between urban, rural, and suburban students. At the same time, even if there are stable
individual differences in carelessness, no student is always careless. Hence, there must be triggering
factors leading to students becoming careless in specific situations. One such factor potentially leading
to carelessness is student affect, given that emotions may also influence an individual’s decision
making and learning (Adolphs & Damasio 2001). As discussed earlier, other forms of disengaged
behavior such as off-task behavior and gaming the system have strong links to student affect. It is
reasonable to hypothesize similar relationships for carelessness. For instance, Epstein (1979)
hypothesizes that careless behaviors among learners may emerge due to feelings of confusion and
tension.

Within this paper, we study this issue within the context of students using an AIED learning
environment. AI-based learning environments are becoming increasingly prominent within education
(cf. Mitrovic, 2003; Suraweera & Mitrovic, 2004; Razzaq, et al., 2005; Koedinger & Corbett 2006;
Heffernan, Koedinger & Razzaq, 2008; Mitrovic, et al., 2009; Razzaq & Heffernan, 2009; Sosa,
Berger, Saw, & Mary, 2011), and many such environments provide detailed log files which can
support fine-grained analysis through educational data mining techniques (Baker & Yacef, 2009).
More specifically, we will study these issues within a Cognitive Tutor (Koedinger & Corbett, 2006).



Cognitive Tutors provide students with guided learning support as they engage in problem-solving,
and provide excellent-quality logs that have formed the basis of dozens of data mining studies
(Koedinger et al., 2010). In addition, models have already been developed for Cognitive Tutors that
can assess the probability that an error is not due to student knowledge (cf. Baker, Corbett, & Aleven,
2008b), based on models of student learning that can estimate the knowledge state of each student at a
given time (Corbett & Anderson 1995), considerably facilitating research into the factors promoting
carelessness.

In this paper, we use a detector of carelessness to study the relationship between affect and
carelessness. We do so using data from a population of students in the Philippines, for whom field
observations of affect are available. To use the carelessness detector within this population, we
validate that the detector can accurately predict student errors when applied to students from a
different country, studying generalizability between the USA and Philippines. We then apply the
carelessness detector to the log files from this data set, labeling every student action in terms of
carelessness, in order to assess each student’s degree of carelessness. We then assess which affective
states are associated with careless errors through correlational analysis. Finally, we examine whether
the relationships between affective states and careless errors change over time. This builds on our
previous research (San Pedro, Baker, & Rodrigo, 2011a; San Pedro, Baker, & Rodrigo, 2011b) that
started to investigate carelessness using a Cognitive Tutor unit. In this paper, we present significant
enhancements, substantial discussion on this behavior within a learning environment, and a more
comprehensive theoretical perspective about carelessness.

METHOD

Data were gathered from 126 public high school students in Quezon City, Philippines (labeled PH
below), who used a Cognitive Tutor unit on scatterplot generation and interpretation (Baker et al.,
2006) for 80 minutes, inside the school’s computer center, after school. The students were between 12
and 14 years old. Students had not explicitly covered these topics in class prior to the study. Prior to
using the software, students viewed conceptual instruction, delivered via a PowerPoint presentation
with voiceover and some simple animations. Each student in each class took a nearly isomorphic pre-
test and post-test, counterbalanced across conditions.

Within the Scatterplot Tutor (Figures 1-3), the learner is given a problem scenario.  He/she is also
provided with data that he/she needs to plot in order to arrive at the solution.  He/she is asked to
identify the variables that each axis will represent. He/she must then provide an appropriate scale for
each axis.  He/she has to label the values of each variable along the axis and plot each of the points of
the data set. Finally, he/she interprets the resultant graphs. The Scatterplot tutor provides contextual
hints to guide the learner, feedback on correctness, and messages for errors.  The skills of the learner is
monitored and displayed through skill bars that depict his/her mastery of skills.



Fig. 1. Scatterplot Problem Scenario (a) and Data Set (b)

Fig. 2. Scatterplot Variable Type Tool

Fig. 3. Scatterplot User Interface for Point-plotting



Sixty four of the participants (referred to as the Experimental or Scooter group) were randomly
assigned to use a version of the tutor with a pedagogical agent, “Scooter the Tutor”, shown in Figure
4.  Scooter was designed to both reduce the incentive to prevent gaming the system and to help
students learn the material that they were avoiding by gaming, while affecting non-gaming students as
minimally as possible. Previous research in the United States found that Scooter reduced gaming,
while increasing learning for gaming students (Baker et al., 2006); however, these patterns were not
statistically significant in the Philippines (Rodrigo et al., 2012). The remaining 62 participants
(Control or NoScooter group) used a version of the Scatterplot Tutor without the pedagogical agent.
The number of students assigned to the conditions in this study was unbalanced because of data
gathering schedule disruptions caused by inclement weather.

Fig. 4. Scooter the Tutor’s Changes in Behavior – Top left: Scooter is pleased with the student’s appropriate use
of the tutor software; Bottom Left: Scooter is angry with heavy gaming behavior; Right: Scooter offers a

supplementary exercise to a gaming student.

Data on student carelessness were produced from the logs generated from Cognitive Tutor usage,
while data on affective states were collected using the BROMP protocol for quantitative field
observation (cf. Ocumpaugh, Baker, & Rodrigo, 2012). Student affective state was coded by a pair of
expert field observers as students used the tutor. Each observation lasted up to twenty seconds, with
each participant being observed 24 times having an interval of 180 seconds between observations.
Each observation was conducted using side glances, to reduce observer effects. To increase tractability
of both coding and eventual analysis, if two distinct affective states were seen during a single
observation, only the first state observed was coded. Any affective state of a student other than the
student currently being observed was not coded. The observers based their judgment of a student’s
affective state on the student’s work context, actions, utterances, facial expressions, body language,
and interactions with teachers or fellow students. These are, broadly, the same types of information
used in previous methods for coding affect (e.g., Bartel & Saavedra, 2000), and in line with Planalp et
al.’s (1996) descriptive research on how humans generally identify affect using multiple cues in



concert for maximum accuracy rather than attempting to select  individual cues. The observers’ inter-
rater reliability was found to be moderate, with Cohen’s (1960) =0.54.

The coding scheme included seven categories: boredom (Pekrun, Goetz, Daniels, Stupnisky, &
Perry, 2010), confusion (Kort, Reilly, & Picard, 2001; Craig, Graesser, Sullins, & Gholson, 2004),
delight (Fredrickson & Branigan 2005), engaged concentration (the affective state associated with
Csikszentmihalyi 1990’s construct of “flow”), frustration (Kort, Reilly, & Picard, 2001), surprise
(Schutzwohl & Borgstedt 2005), and a category defined as ‘?’ representing any affect other than the
previous six mentioned. These categories are referred to as cognitive-affective states (Baker, D’Mello,
Rodrigo, & Graesser, 2010), as they are states found to involve both cognitive and affective aspects.
These affective states were chosen due to arguments that they are more representative of affect during
learning, than Ekman and Friesen’s (1978) six basic emotions of fear, anger, happiness, sadness,
disgust and surprise (Csikszentmihalyi 1990; Kort, Reilly, & Picard, 2001; Craig, Graesser, Sullins, &
Gholson, 2004; D’Mello, Lehman & Person, 2010; D’Mello & Graesser, 2012). Such affective states
are also persistent when solving problems within computer learning environments (Arroyo et al.,
2009; D’Mello, Craig, Sullins, & Graesser, 2006; D’Mello, Graesser, & Picard, 2007; D’Mello,
Lehman, & Person, 2010; Graesser et al., 2006; Woolf et al., 2009). Engaged concentration is in
specific quite common during learning (cf. Baker, D’Mello, Rodrigo, & Graesser, 2010), and refers to
the state of engagement with a task where concentration is intense, attention is focused, and
involvement is complete (Baker, D’Mello, Rodrigo, & Graesser, 2010), while not including task-
related aspects of Csikszentmihalyi’s (1990) construct of flow such as clear goals, balanced challenge,
and direct and immediate feedback.

Despite being learning-centered, this set of cognitive-affective states can also be mapped within
the perspective of emotions using Russell’s (2003) Core Affect framework, as discussed in (Baker,
D’Mello, Rodrigo, & Graesser, 2010). Russell’s Core Affect framework asserts that an affective state
has two components: valence (increasing or decreasing feelings of pleasure) and arousal (increasing or
decreasing feelings of activation and energy). Baker and colleagues hypothesized that boredom has
negative valence and low arousal; confusion has negative valence and moderate arousal; frustration
has high negative valence and a high arousal; delight has positive valence and high arousal; surprise
has high arousal and can have either positive or negative valence; and engaged concentration has
positive valence. It is not yet clear what the level of arousal is for engaged concentration, as engaged
concentration can be an intense experience, but there can also be a decrease in arousal when an
individual experiences uninterrupted and concentrated cognition (cf. Mandler 1984).

Operationalization of Carelessness using Logs

The incidence of carelessness within the Cognitive Tutor was traced with a model designed to assess
“slips” (cf. Baker, Corbett, & Aleven, 2008b). Slips in that paper are operationalized in a fashion
essentially identical to prior theory of how to identify careless errors (Clements 1982). The model
used in (Baker, Corbett, & Aleven, 2008b), termed the Contextual Slip model, contextually estimates
the probability that a specific student action indicates a slip/carelessness, whenever the student reaches
a problem step requiring a specific skill, but answers incorrectly.   The probability of carelessness/slip
is assessed contextually, and is different depending on the context of the student error. The probability
estimate varies based on several features of the student action and the situation in which it occurs,
including the speed of the action, and the student’s history of help-seeking from the tutor. As such, the



estimate of probability of carelessness/slip is different for each student action. The Contextual Slip
model has been shown to be a statistically significant predictor of student performance on a post-test
measuring learning from a Cognitive Tutor for Genetics, even after controlling for assessment of each
student’s knowledge within the software (Baker et al., 2010).

The Contextual Slip model is created using Bayesian Knowledge Tracing (BKT) (Corbett &
Anderson 1995), a model used to estimate a student’s latent knowledge based on his/her observable
performance. The BKT framework, in its original articulation, is used within Cognitive Tutors to infer
student knowledge by continually updating the estimated probability a student knows a skill every
time the student gives a first response to a problem step. It uses four parameters – two learning
parameters L0 (initial probability of knowing each skill) and T (probability of learning the skill at each
opportunity to make use of a skill), together with two performance parameters G (probability that the
student will give a correct answer despite not knowing a skill) and S (probability that the student will
give an incorrect answer despite knowing the skill). Each of the four parameters are estimated
separately for each skill, thus each skill has its own BKT model (estimated from data for each skill).
Note that in this model – different from the Contextual Slip model, though BKT is used to create that
model – the four parameters for each skill are invariant across the entire context of using the tutor, and
invariant across students. Using Bayesian analysis, BKT re-calculates the probability that the student
knew the skill before the response (at time n-1), using the information from the response, then
accounts for the possibility that the student learned the skill during the problem step, such that
(Corbett & Anderson, 1995):
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With the information from the logs, parameters needed for a baseline BKT model were fitted by
employing brute-force grid search (cf. Baker et al., 2010), an approach that finds optimal parameter
estimates for problems where local optimization methods such as iterative gradient descent are likely
to produce relatively poor estimates. From this baseline model, we then create first-step estimations of
the probability that each action is a contextual slip. These estimations are not the final Contextual Slip
model, but are used to produce it. Specifically, we use BKT to estimate whether the student knew the
skill at each step. In turn, we use these estimates, in combination with Bayesian equations, to label
incorrect actions with the probability that the actions were slips, based on the student performance on
successive opportunities to apply the rule. More specifically,  given the probability that the student
knows the skill at a specific time, Bayesian equations and the static BKT parameters are utilized to
compute labels for the Slip probabilities for each student action (A) at time N, using future
information (two actions afterwards – N+1, N+2). In this approach, we infer the probability that a
student’s incorrectness at time N was due to not knowing the skill, or whether it is due to a slip. The
probability that the student knew the skill at time N can be calculated, given information about the
actions at time N+1 and N+2 ( AN+1,N+2 ), and the other parameters of the Bayesian Knowledge
Tracing model:



P(AN is a Slip | AN is incorrect) = P(Ln | AN+1,N+2 ) . (4)

This gives us a first estimate that a specific incorrect answer is a slip. However, this estimate uses
data on the future, making it impossible to use to assess slip in real-time. In addition, there is
considerable noise in these estimates, with estimates trending to extreme values that over-estimate slip
in key situations due to limitations in the original BKT model (Baker, Corbett, & Aleven, 2008a). But
these estimated probabilities of slip can be used to produce a less noisy model that can be used in real
time, by using them as training labels (e.g. inputs) to machine-learning. Specifically, a linear
regression model is created that predicts slip/carelessness contextually.  The result is a model that can
now predict at each practice opportunity whether an action is a slip, using only data about the action
itself, without any future information.

Models for Contextual Slip were produced using truncated training data (cf. Baker, Corbett, &
Aleven, 2008a), to predict contextual slip without using data from the future. This adjustment of the
training data improves prediction of future performance by removing training examples where the
prior probability, P(Ln-1), that the student knew the skill was extremely high, approaching 1. When
P(Ln-1) approaches 1, there can be over-estimation of the probability that an error is due to a slip, if the
estimate of student knowledge is erroneously high.

In order to validate these detectors’ ability to predict future student correctness (a validation of
their predictive accuracy), we substitute the contextual slip model, and a corresponding contextual
guess model (cf. Baker, Corbett, & Aleven, 2008b) for the Slip and Guess parameters of Bayesian
Knowledge Tracing, labeling each student action with variant estimates as to how likely the response
is a guess or a slip.

Creation and Validation of Carelessness Detectors

Using the Contextual Slip approach detailed in the previous section, we created our carelessness
detectors by training models with each student action originally labeled with the probability estimate
of slip occurrence, using information on that student action generated on our tutor logs. For each
action, a set of numeric or binary features were distilled, describing that action. These features, drawn
from previous work to detect contextual slips in other learning software (e.g. Baker, Corbett, &
Aleven, 2008b), included:

 Action assessment – correct, incorrect, known bug (procedural misconception), or a help
request.

 The type of interface widget involved in the action – was the student selecting from a
checkbox, pull-down menu, typing in a number or a string, or plotting a point.

 Was this the student’s first attempt to act (answer or ask for help) on this problem step?
 The tutor’s assessment of the probability that the student knows the skill involved in this

action, called “p-know”, derived using the Bayesian Knowledge Tracing algorithm in (Corbett
& Anderson 1995).

 "Pknow-direct" - if the current action is the student's first attempt on this problem step, then
pknow-direct is equal to p-know, but if the student has already made an attempt on the
problem step, then pknow-direct is -1.



 Is this the first attempt of student to answer or get help on problem step?
 Time taken for the current action in seconds.
 The time taken for the action, expressed in terms of the number of standard deviations this

action’s time was faster or slower than the mean time taken by all students on this problem
step, across problems.

 The time taken in the last 3 actions, expressed as the sum of the numbers of standard
deviations each action’s time was faster or slower than the mean time taken by all students on
that problem step, across problems.

 Time taken by this student on each opportunity to practice the skill involved in the action,
averaged across problems.

 Percentage of past problems where the student made errors on this problem step.
 The number of times the student has gotten this specific problem step wrong, across all

problems.
 The number of times the student asked for help or made errors on this skill, across all

problems.
 The number of times in the 3 previous actions where the action involved the same interface

widget as the current action.
 The number of times in the 5 previous actions where the action involved the same interface

widget as the current action. The number of times in the previous 8 actions where the action
was a help request.

 The number of times in the previous 5 actions where the action was incorrect.

As in previous work to model slipping, the features extracted from each student action within the
tutor were used to predict the probability that the action represents a slip. The prediction took the form
of a linear regression model, fit using M5-prime feature selection in the RapidMiner 5.0 data mining
package (an earlier version of this system is described in Mierswa, Wurst, Klinkenberg, Scholz, &
Euler, 2006). This resulted in numerical predictions of the probability that a student action was a
careless error, each time a student made a first attempt on a new problem step. Linear regression was
chosen as an appropriate modeling framework when both predictor variables and the predicted
variable are numeric. In addition, linear regression is known to function well with noisy educational
data, creating relatively low risk of finding an “over-fit” model that does not function well on new
data (cf. Hawkins, 2004).

Six-fold student-level cross-validation (cf. Efron & Gong 1983) was conducted to evaluate the
detector’s goodness. Within this approach, a model is repeatedly trained on five groups of students and
tested on a “held-out” sixth group of students. Cross-validating at this level allows us to assess
whether the model will remain effective for new students drawn from the same overall population of
students studied. Models were trained separately on the two groups of students using the two versions
of the software. Table 1 shows a model trained on data that used the tutor without the pedagogical
agent (NoScooter group) and a model trained on data that used a tutor with an agent (Scooter group),
with their respective final attributes. The detector from the NoScooter group data achieved a cross-
validated correlation coefficient of r = 0.886 to the original training labels of the probability that each
student action was a slip, while the detector from the Scooter group data achieved r = 0.836, in each
case a high degree of correlation (Rosenthal & Rosnow 2008).



Table 1
Carelessness (Contextual Slip) Models for the NoScooter and Scooter Groups

Carelessness (NoScooter Group) = Carelessness (Scooter Group) =
-0.00942 * Action is a bug +0.03783 * Action is a bug
+0.08783 * Action is a help request +0.08464 * Action is a help request
+0.02517 * Input is a string -0.05084 * Input is a string
-0. 00500 * Input is a number +0.01546 * Input is number
+0.01593 * Input is a point +0.08198 * Input is a point
-0.02812 * Input is checkbox or not

choice/string/number/point
-0.08615 * Input is checkbox or not

choice/string/number/point
+0. 96077 * Probability that the student knew the skill

involved in this action
+0.01126 * Probability that the student knew the

skill involved in this action
-0.03118 * Not first attempt at skill in this problem
+0.00019 * Time taken

+ 0.01126 * “Pknow-direct”
-0.02912 * Not first attempt at skill in this

problem
-0.01451 * Time taken, normalized in terms of SD off

average across all students at this step
+0.00115 * Time taken
-0.00820 * Time taken, normalized in terms of

SD off average across all students at this step
+0.00612 * Time taken in last three actions,

normalized
-0.00283 * Time taken in last three actions,

normalized
-0.00268 * Time taken in last five actions, normalized
+0.00072 * Number of errors the student made on this

step on all problems

-0.00197 * Time taken in last five actions,
normalized

-0.00257 * Number of errors the student made
on this step on all problems

+0.00511 * Percentage of past problems the student
asked for help on this problem step

-0.00906 * Percentage of past problems the
student asked for help on this problem step

+0.00021 * Percentage of past problems the student
made errors on this problem step

-0.00004 * Time taken by this student on each
opportunity for this problem step

-0.00734 * How many of the previous 5 actions were
errors

+0.02910 * Probability of knowing the skill before
answering

-0.00366

-0.00121 * Percentage of past problems the
student made errors on this problem step

-0.00099 * Time taken by this student on each
opportunity for this problem step

-0.00999 * How many of the previous 8 actions
were help requests

+0.00354 * How many of the previous 5 actions
were errors

+0.81721 * Probability of knowing the skill
before answering

+0.01842

Generalizability of Carelessness Detectors

Aside from assessing a model’s ability to predict existing data, model evaluation and selection should
also include the ability of a model to generalize to different contexts and domains (Forster 2000;
Myung, Pitt, & Kim, 2005). We have already assessed one form of generalizability for our models, by
cross-validating them at the student level, showing predictive accuracy within new students from the
student population, using the same tutor interface. In this section, we evaluate the generalizability of



our models when applied to data from students using a different tutor interface, and to data from a
different student population.

To investigate generalizability of our carelessness detectors to data from students using a
different tutor interface, we tested each detector on the other data set, i.e. the NoScooter detector was
tested on the Scooter group dataset and the detector from the Scooter group was tested on the
NoScooter group dataset. Table 2 shows the detectors’ correlation between the labeled (from Eq. 2)
and predicted (from the models) values of slip, for each student action, in each data set. Within the
NoScooter condition data, the detector trained on the Scooter condition data performed comparably or
perhaps slightly lower (but still good, r=0.846) than the detector trained on the NoScooter data
(r=0.886).Within the Scooter data, the detector trained on the NoScooter data performed worse
(r=0.484) than the detector trained on the Scooter data (r=0.836), although still respectably. These
results appear to indicate that there is some degradation when a carelessness detector is transferred
between versions of the tutor with or without a pedagogical agent, but that models remain
substantially above chance. One possible interpretation for the asymmetry in transfer between the two
environments is that the skills and problem steps in the NoScooter environment are also present in the
Scooter environment, whereas the opposite is not true: Scooter provides additional supplementary
exercises to students when they game the system. As such, the model trained from the Scooter group
accounted for additional problem steps not present in the NoScooter group; the NoScooter model, not
trained on these steps, could not predict gaming during these steps as well.

We also established the detectors’ generalizability to new data from new student populations by
applying our detectors trained on data from students in the Philippines to Scatterplot log data from a
school in the USA. These interaction logs from the USA (described in greater detail in Baker et al.,
2006) were gathered from 6th-8th grade students, in the suburbs of a medium-sized city in the
Northeastern USA. Fifty-two students used the Scooter version of the tutor, and 65 students used the
NoScooter version. The exact same features were distilled from the USA student logs from both the
NoScooter and Scooter tutor versions, as had been distilled from the data from the Philippines. The
detectors trained on data from the Philippines, were applied without modification to these distilled
data from the USA students, to test for generalizability.

When transferred to data from the USA, both of the detectors trained on data from the Philippines
performed quite well for all combinations of training and test conditions. The detector developed on
the NoScooter sample from the Philippines achieved a correlation of 0.708 to the USA NoScooter
data, and a correlation of 0.609 to the USA Scooter data. The detector developed on the Scooter
sample from the Philippines achieved a correlation of 0.834 to the USA NoScooter data, and a
correlation of 0.788 to the USA Scooter data.  This is evidence for detector generalizability, as the
detectors perform comparably well (when applied to the USA NoScooter data) or a little worse but
still very respectably (when applied to the USA Scooter data), in a new country than in the original
country, with no re-fitting. As a whole, taking correlation as a metric, the carelessness detectors
trained in this study appear to show little degradation when transferred between these two countries.
Models of help-seeking skill have also been shown to transfer between the USA and Philippines
(Soriano et al., 2012), suggesting some commonalities in how behavior manifests between these two
countries.



Table 2
Correlation (r value) of Slip Detectors to Slip Labels in Different Data Sets.

NoScooter-Group Detector
(PH)

Scooter-Group Detector
(PH)

NoScooter Group Data (PH) 0.886 0.846
Scooter Group Data (PH) 0.484 0.836
NoScooter Group Data (US) 0.708 0.834
Scooter Group Data (US) 0.609 0.788

STUDYING THE RELATIONSHIP BETWEEN CARELESSNESS AND AFFECT

Having developed and validated a detector of student carelessness, we can now utilize it to analyze the
relationship between carelessness and affect, in the data set from the Philippines for which affective
observational data was available. The first step to doing this was to apply the detector trained for each
condition (Scooter) and (NoScooter) to the data from that condition. For this analysis, we assessed the
carelessness of each student in each group (e.g. Scooter and NoScooter), by taking the average
probability of carelessness (slip estimates) on each incorrect action the student made, as in (Baker et
al., 2010; Baker & Gowda 2010).

There was an overall difference in carelessness between the two conditions. The overall mean
carelessness (through slip probability estimates) for students in the NoScooter environment was
0.41.This does not mean that 41% of errors were careless errors, but that students have a probability of
41% of making a slip if they know the skill. The Scooter group had an overall mean carelessness of
0.36. The difference in carelessness between the two conditions was significant, t(124) = 2.01, two-
tailed p = 0.047. This suggests that the pedagogical agent, designed to reduce gaming, has somehow
reduced carelessness. At the same time, there were no significant differences in the frequency of any
affective state between conditions. The largest difference found between conditions was for Engaged
Concentration. Students in the Scooter condition displayed this affect 37.17% of the time; students in
the NoScooter condition displayed this affect 43.45% of the time; t(124) = 1.52, two-tailed p = 0.13.

We studied the relationship between each student’s overall proportion of carelessness and their
overall proportion of each affective state, with correlational analyses conducted in SSPS, shown in
Table 3. The results were somewhat surprising. Carelessness was negatively correlated with boredom
in both interfaces, r=-0.36, p=0.004 for NoScooter group; r=-0.35, p=0.004 for Scooter group.
Confusion was also negatively correlated with carelessness, r=-0.38, p=0.002 for NoScooter group;
r=-0.32, p=0.011 for Scooter group.  At the same time, carelessness was positively correlated with
engaged concentration, r=0.58, p<0.001 for NoScooter group; r=0.54, p<0.001 for Scooter group. This
indicated that more engaged students were careless more often, while less engaged students were
careless less often. Carelessness and frustration were not significantly correlated in either condition,
r=-0.18, p=0.17 for NoScooter group; r=0.13, p=0.32 for Scooter group. In the following analyses, we
will explore these three significant relationships in greater detail.



Table 3
Correlations of Carelessness and Affective State for Entire Tutor Usage.

Statistically Significant Correlations in Bold.
NoScooter group Scooter group

Careless – Boredom -0.36 (p = 0.004) -0.35 (p = 0.004)
Careless – Confusion -0.38 (p = 0.002) -0.32 (p = 0.011)
Careless – Engaged
Concentration

+0.58 (p < 0.001) +0.54 (p < 0.001)

Careless – Frustration -0.18 (p = 0.17) +0.13 (p = 0.32)

We examined the changes in carelessness and affect over time to see if there were significant
differences in the relationship and occurrence of carelessness and affect as the student used the tutor.
We did this by separating the observed affect and estimates of carelessness during the student’s tutor
usage into two halves. For the observed affect, the first 12 affect observations for each student (across
both raters) were grouped as the first half, and the remaining 12 observations per student were grouped
as the second half. To split the estimates of carelessness into halves, we took and split the overall time
of each student’s usage of the tutor (splitting by time rather than number of actions), and grouped the
first half and second half of that student’s actions based on the total elapsed time at each action. We
computed the average carelessness for incorrect actions during each half of each student’s tutor usage.
Figure 5 shows the student affect percentages and average estimates of carelessness in each half of the
students’ tutor usage in both NoScooter and Scooter groups.

Across time, the changes in the incidence of different affective states were consistent across
conditions. In both conditions, students exhibited less confusion in the second half of their usage than
the first half, F(1,124) = 61.76, p < 0.001. They also exhibited more engaged concentration over time,
F(1,124) = 40.26, p < 0.001, and exhibited more boredom over time, F(1,124) = 11.89, p = 0.001. The
changes in the proportion of these affective states over time were not significantly different between
the NoScooter and Scooter conditions – for boredom F(1,124) = 0.01, p = 0.93, for confusion F(1,124)
= 0.79, p = 0.38, and for engaged concentration F(1,124) = 1.82, p = 0.18.

For carelessness, the degree was significantly different during the second half of tutor usage
across conditions, F(1,124) = 22.85, p < 0.001). However, carelessness showed a significant trend
towards increase over time in the NoScooter condition, t(61) = -8.23, two-tailed p < 0.001, while a
marginally significant decrease over time in the Scooter condition, t(63) = 1.88, two-tailed p =0.06.
The difference in trend between conditions (e.g. the interaction effect) was statistically significant,
F(1,124) = 53.81, p < 0.001. Overall, student errors (whether careless or not) significantly decreased
over time in both conditions, F(1,124) = 74.53, p < 0.001. This effect was seen in both the NoScooter
condition (t(61) = 5.70, two-tailed p < 0.001) and the Scooter condition (t(63) = 6.50, two-tailed p <
0.001). The changes in the number of errors over time were not significantly different between the
NoScooter and Scooter conditions, F(1,124) = 0.63, p = 0.43. This, together with the trend in
carelessness, may suggest that Scooter was effective overall in reducing student errors, including both
careless and non-careless errors.



Fig. 5. Carelessness, Affect, Error, By Time of Tutor Usage

Table 4 shows the correlations between carelessness and the three most common affective states
over time.  During the first half of the tutor usage period, the correlations between carelessness and
boredom trended negative in both groups, but were not significant, r = -0.19, p = 0.15 for NoScooter
group; r = -0.09, p = 0.47 for Scooter group. During the second half, the correlations became
significantly negative, r = -0.32, p = 0.01 for NoScooter group; r = -0.34, p = 0.01 for Scooter group.
Steiger’s Z-test (1980), a standard test for comparing multiple correlations with no overlapping
variables within a single population, was used to determine whether the correlation between
carelessness and boredom was significantly different between the two time periods.  The difference
though in correlation was not significant for both the NoScooter group, Z = 0.94, p = 0.34, and the
Scooter group, Z = 1.72, p = 0.08.

During the first half of the tutor usage period, the correlations between carelessness and
confusion trended negative in both groups, but were not significant, r = -0.07, p = 0.57 for NoScooter
group; r = -0.18, p = 0.16 for Scooter group. During the second half, the correlations became
significantly negative, r = -0.37, p = 0.004 for NoScooter group; r = -0.33, p=0.009 for Scooter group.
However, the difference in correlation between the time periods was not statistically significant for
either group, Z = 1.83, p = 0.07 for NoScooter group; Z = 0.97, p = 0.33 for Scooter group.

During the first half of the tutor usage period, the correlations between carelessness and engaged
concentration trended positive in both groups, but were not significant for NoScooter group, r = 0.17,
p = 0.20. For the Scooter group, however, tutor usage for the first half was significant, r = 0.31, p =
0.014. During the second half, the correlations became significantly positive, r = 0.55, p < 0.001 for
NoScooter group; and remained significant, r = 0.50, p < 0.001, for Scooter group. The correlation
between carelessness and engaged concentration was significantly different between the first half of
tutor usage and the second half of tutor usage, for NoScooter group, Z = -2.73, p = 0.006; but not
significantly different for Scooter group, Z = -1.48, p = 0.14.



We can see here that the relationship between carelessness and affective states were mostly
significant during the second half of tutor usage. Looking at the Steiger’s Z values, however, shows
that carelessness’ positive or negative relationship with the affective states have been fairly consistent
from start to end. Further discussion about these relationships over time will be given below.

Table 4
Correlations Between Carelessness and Affect By Time Within Tutor Usage. Significant Corrections in Bold.

NoScooter Group Scooter Group
Careless – Boredom (1st Half) -0.19 (p = 0. 15) -0.09 (p = 0.47)
Careless – Confusion (1st Half) -0.07 (p = 0.57) -0.18 (p = 0.16)
Careless – Engaged Concentration
(1st Half)

+0.17 (p = 0.20) +0.31 (p = 0.014)

Careless – Boredom (2nd Half) -0.32 (p = 0.012) -0.34 (p = 0.006)
Careless – Confusion (2nd Half) -0.37 (p = 0.004) -0.33 (p = 0.009)
Careless – Engaged Concentration
(2nd Half)

+0.55 (p < 0.001) +0.50 (p < 0.001)

DISCUSSION AND CONCLUSION

Carelessness has been identified as a problematic behavior in classrooms since the 1950s (e.g. Eaton,
D’Amico, & Phillips, 1956). Within the context of educational software, the disengaged behavior of
carelessness has not been heavily studied compared to other student behaviors. In this paper, we
leverage educational data mining to model carelessness, towards understanding the factors that lead a
student to be careless in a given situation. More specifically, we study the relationship between student
carelessness and affective states within a Cognitive Tutor for Scatterplots, using automated detection
of carelessness and field observations of student affect. Student carelessness, operationalized as the
probability that an error was due to slipping, was estimated using the Contextual Slip model by Baker,
Corbett, and Aleven (2008b), and implemented for this specific tutor. The detector infers carelessness
from the features of the individual student action.

The detector’s assessment of each student’s carelessness was then studied in conjunction with
that student’s proportion of each affective state. Several relationships were found. First, the more
confused a student is, the less likely errors are to be careless. The negative relationship between
confusion and carelessness is reasonable. In particular, not knowing a skill is likely to be associated
with confusion (cf. D’Mello, Person, & Lehman, 2009; Baker, D'Mello, Rodrigo, & Graesser, 2010;
Rodrigo, Baker, & Nabos, 2010; Lee, Rodrigo, Baker, Sugay, & Coronel, 2011), and not knowing a
skill will increase the number of errors that cannot be attributed to carelessness (as our model requires
that a skill to be known for an error to be seen as careless). As such, this finding accords to what might
be expected. Second, the more bored a student is, the less likely errors are to be careless. The
significant negative correlation between carelessness and boredom is somewhat more surprising – for
example, Cheyne, Carriere & Smilek (2006) hypothesize that boredom proneness leads to
carelessness. One possible explanation can be attributed to previous findings that boredom is
correlated with poorer learning (Craig, Graesser, Sullins, & Gholson, 2004; Pekrun, Goetz, Daniels,
Stupnisky, & Perry, 2010), and the hypothesis that boredom leads to shallow information processing
and reduce the use of task-related cognitive strategies (Pekrun, Goetz, Daniels, Stupnisky, & Perry,
2010). As such, boredom may have led to lower knowledge, which in turn would have led to more
errors that cannot be attributed to carelessness. Third, the more a student displays the affective state of



engaged concentration, the more likely he/she is to display carelessness. One possible hypothesis for
this finding comes from work by Clements (1982), which found a positive relationship between
carelessness and confidence, such that students who understood the material and believed they knew
how to answer (or even answered relatively quickly), made a higher proportion of careless errors.
Hence, a student with average knowledge who is engaged may have tendencies to overestimate their
own ability (cf. Prohaska & Maraj 1995; Linnenbrink & Pintrich 2003), leading them to become
careless.

Examination of slip and affective state behavior over time and their respective correlations
supported these hypotheses. The correlation between confusion and carelessness became significantly
negative as students used the tutor more. However, confusion (as well as total errors – whether
careless or not) decreased over time. Hence, the students who were struggling most and remained
confused even after using the tutor for a substantial amount of time were less likely to make errors that
were inferred as careless. Similarly, the correlation between carelessness and engaged concentration
became positive and significant predominantly during the second half of tutor usage (in NoScooter
group, but in both halves for the Scooter group). One possible interpretation for this is that a student
who is engaged most of the time may succeed, become over-confident, and then commit careless
errors. It is interesting to note that the connections between affect and carelessness were generally
substantially stronger in the second half of tutor usage than the first, across affective states. It is
possible that as the students used the tutor more, careless errors became more and more driven by the
presence of affect (or decrease of it, as in confusion), even as the student learned more over time.

Another possible interpretation, however, is that the careless errors may instead be due to the
relatively low cost to the learner from making a mistake. In other words, once a student generally
knows the answers, he or she may choose to work quickly, knowing that some mistakes may occur,
but that the consequences will be limited. The learner may even be testing him or herself to see how
fast he or she can complete the problems, an engaging and challenging activity (which would explain
the correlation between carelessness and engaged concentration, as well as the relationship to mastery
goals), leading to some seemingly careless errors. A strongly engaged user need not be reflecting
deeply about their work.

Overall, these patterns seem very different from those seen for other forms of disengagement. For
example, previous research has found positive associations between boredom and gaming the system
(Baker, D'Mello, Rodrigo, & Graesser, 2010), off-task behavior (Baker et al., 2011), and using the
software in a fashion unrelated to the educational task (Sabourin, Rowe, Mott, & Lester, 2011). This
suggests that the motivations underlying a student’s carelessness may be quite different from the
motivations underlying other disengaged behaviors.

It is worth noting that there have also been surprising relationships found between carelessness
and goal orientation (Hershkovitz, Wixon, Baker, Gobert, & Sao Pedro, 2011). In this work,
carelessness was found to be positively correlated with academic efficacy and negatively correlated
with disruptive behavior and self-presentation of low achievement (Hershkovitz, Wixon, Baker,
Gobert, & Sao Pedro, 2011). In addition, carelessness was found to be higher among students with
mastery or performance goals than among students manifesting neither type of goal orientation.

Thus, it is worth noting that the factors carelessness is associated with are typically thought to be
associated with more successful students. For instance, engaged concentration has been repeatedly
shown to be associated with successful learning (Craig, Graesser, Sullins, & Gholson, 2004), and
boredom has been repeatedly shown to be associated with poorer learning (Craig, Graesser, Sullins, &
Gholson, 2004; Pekrun, Goetz, Daniels, Stupnisky, & Perry, 2010). In addition, mastery and



performance goals have been shown to be associated with successful learning (Harackiewicz, Barron,
Tauer, & Elliot, 2002), as is self-efficacy (Zimmerman, Bandura, Martinez-Pons, 1992).  As such, it
may be that carelessness will turn out to be a form of disengaged behavior characteristic of generally
more successful students, a pattern also seen in Clements (1982) and Baker, Corbett, and colleagues
(2010). As such, the previous notions of careless students as lazy (Hurlock & McDonald 1934),
absent-minded (Eysenck & Keane 1990), and unorganized (Epstein 1979) may not be the most
appropriate description for careless students.

Instead, we may need to consider carelessness as a risk to engagement for students who are
generally successful. These results illustrate the key role of affect in student carelessness, and suggest
that adaptive responses to carelessness should take probable student affect into account. Based on the
evidence from this study, carelessness is a risk for students who are typically highly engaged. As such,
it may be appropriate to tailor messages given to careless students to the motivational needs of highly
engaged students (Graesser, Rus, D’Mello, & Jackson, 2008), potentially leading to very different
intervention than is typically given to disengaged students. While these highly engaged students are
typically successful, they are still at risk of becoming disengaged (Csikszentmihalyi & Schneider
2000), or in having consequences due to their careless errors, especially in high-stakes situations such
as standardized exams. In particular, though carelessness is generally characteristic of successful and
engaged students, it is nonetheless associated with failing to attend college, once student knowledge is
controlled for (San Pedro, Baker, Bowers, & Heffernan, 2013). As such, it remains important to
understand carelessness better and address it effectively, in order to move towards computer-aided
instruction and computer-aided learning which effectively addresses the disengagement of all students.
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